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Abstract. The distribution of a suitably defined azimuthal angle in diffractive deep inelastic scattering
contains information on the polarisation of the exchanged photon. In particular it allows one to constrain
the longitudinal diffractive structure function. We investigate the potential of such bounds in general and
for particular diffractive final states.

1 Introduction

The inclusive cross section for deep inelastic diffraction
measured at HERA [1] shows a remarkable pattern of scal-
ing violation: the diffractive structure function
F

D(3)
2 (xIP , β, Q2) is found to rise with Q2 even at rather

large values of the scaling variable β. When FD
2 is in-

terpreted in terms of diffractive parton densities evolving
according to the DGLAP equations this leads to a signif-
icant amount of gluons with a large momentum fraction.
An important question for the QCD analysis of FD

2 and
also for its extraction from the data is how much of FD

2
is due to longitudinally polarised photons. Several models
of diffraction find in fact a considerable longitudinal con-
tribution FD

L to FD
2 = FD

T + FD
L at large β [2]. It is of

course crucial to know whether or not such a contribution
is of leading twist if one wants to describe FD

2 in terms of
leading twist parton densities and their evolution [3].

In [4,5] its was pointed out that an appropriate az-
imuthal distribution in the final state can be used to ob-
tain bounds on FD

L , without requiring measurements at
different energies of the ep collision as in the standard
method for the separation of longitudinal and transverse
structure functions. The aim of this paper is to make some
comments on the potential of these bounds in general, and
to see what can be expected for FD

L and its bounds for
particular diffractive final states and dynamical models.

2 The azimuthal angle

Let us consider a diffractive reaction e(k)+p(p) → e(k′)+
X(pX)+ p̃(p̃), where X is the diffractive system and p̃ the
scattered proton or proton remnant and where we have
indicated four-momenta in parentheses. We will always
work in the one-photon exchange approximation. If we
define some four-vector τ in the final state and go to the
γ∗p c.m. with the positive z axis defined by the photon
momentum q then we have an azimuthal angle ϕ between
the electron momentum k and τ (Fig. 1) which contains
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Fig. 1. Kinematics of a diffractive process in the γ∗p c.m. The
vector τ is defined in Fig. 2
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Fig. 2. Definition of ~τ as the thrust axis in the c.m. of the
diffractive system X, oriented to point into the photon direc-
tion. θ is the angle between ~τ and the photon momentum

information on the polarisation of the exchanged photon.
For τ we have the freedom of choice under the condition [4]
that it should only depend on momenta of the subreaction
γ∗(q)+p(p) → X(pX)+p̃(p̃). Here we choose the following:
go to the rest frame of the system X and set τ = (0, ~τ)
where ~τ is the thrust axis of X oriented to point into the
photon direction. If X consists only of two particles then
~τ simply is the direction of the forward particle as shown
in Fig. 2 (a), the general case is represented in Fig. 2 (b).

The dependence of the ep cross section on this angle
is explicitly given as a trigonometric polynomial [4,5]

dσ(ep → ep̃X)
dϕ dQ2 dx dxIP dΦ

=
αem

2π2

1 − x

xQ2

(
1 − y + y2/2

)
·{S++ + εS00 − εS+− · cos 2ϕ

−2
√

ε(1 + ε) ReS+0 · cos ϕ

+2rL

√
ε(1 − ε) ImS+0 · sinϕ

}
, (1)
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where rL = ±1 is the helicity of the incident lepton. We
have used the conventional variables Q2 = −q2, x =
Q2/(2q · p), y = (q · p)/(k · p), β = Q2/(2q · ∆), xIP =
(q · ∆)/(q · p) with ∆ = p − p̃, and the usual ratio ε =
(1 − y)/(1 − y + y2/2) of longitudinal and transverse pho-
ton flux. The functions

Smn(xIP , β, Q2, Φ) =
dσmn

dxIP dΦ
, m, n = −, 0,+ (2)

do not depend on ϕ, for m = n they are the differential
γ∗p cross sections for photon helicity m, and for m 6= n
they give the interference between photon helicities m and
n. With Φ we have denoted any additional variables of
the γ∗p → Xp̃ reaction one may want to consider, pro-
vided that they are invariant under a parity transforma-
tion, which excludes e.g. further azimuthal angles. S+− is
real under these circumstances whereas S+0 may have an
imaginary part, which one can however expect to be small
compared with its real part [5]. Note that for the appear-
ance of S+0 in the ep cross section it is essential that ϕ is a
genuine azimuthal angle ranging from 0 to 2π; if one were
to define ϕ as the angle between the two planes shown in
Fig. 1 then ϕ and ϕ + π would be equivalent and terms
with cos ϕ and sinϕ would average out in (1).

3 Bounds on the longitudinal cross section

From the ϕ dependence of the ep cross section one obtains
the interference terms S+− and S+0 in addition to the
weighted sum Sε = S+++εS00 of γ∗p cross sections. These
allow to constrain S00 as [5]

Sε − S+−
2ε

−
√(

Sε − S+−
2ε

)2

− 2 |S+0|2
ε

≤ S00 , (3)

S00 ≤ Sε − S+−
2ε

+

√(
Sε − S+−

2ε

)2

− 2 |S+0|2
ε

, (4)

S00 ≤ Sε + S+−
ε

. (5)

If ImS+0 is unknown because the lepton beam is unpo-
larised one can replace S+0 with ReS+0 here and in the
sequel. Weaker but simpler versions of bounds (3) and (4)
are

2 |S+0|2
Sε − S+−

≤ S00 , (6)

S00 ≤ Sε − S+−
ε

, (7)

respectively, they correspond to the leading terms when
(3) and (4) are Taylor expanded in |S+0|2/(Sε − S+−)2.

To obtain bounds on the Φ-integrated longitudinal
cross section dσ00/dxIP , from which the diffractive struc-
ture function F

D(3)
L (xIP , β, Q2) is obtained by multiplying

with Q2 · (1 − x)/(4π2αem), there are two possibilities:
1. one can extract Sε, S+−, S+0 differential in certain

variables Φ, evaluate the bounds (3) to (7) on S00 and
then integrate over Φ, or

2. one can determine Sε, S+−, S+0 already integrated
over Φ and evaluate (3) to (7).

For bounds (5) and (7) the two procedures are obviously
equivalent, but for the other ones they are not. While the
second possibility allows for a more inclusive measurement
it is an easy exercise to show that bounds (3), (4) and (6)
become weaker each time one integrates over a variable
before evaluating them, except if S+0/(Sε − S+−) is con-
stant in that variable—in this case procedures 1. and 2.
give again the same result. In practice this means that if
Sε − S+− and S+0 have a quite different behaviour in a
variable Φ one can expect the bounds (3), (4), (6) to be
better if they are first evaluated with some binning in Φ
and then integrated. An example of such a variable is the
polar angle θ of the thrust axis defined in Fig. 2 (a), as
we shall see.

We now show that there is a limit on how good the
bounds (3), (4), (5) can be. For this we notice that there
is an upper bound on the interference terms between lon-
gitudinal and transverse photons:

2 |S+0|2 ≤ S00 (S++ − S+−) . (8)

To see this it is convenient to change basis from circular to
linear photon polarisation vectors, related by ε+ = −(ε1+
iε2)/

√
2 and ε− = (ε1 − iε2)/

√
2 where ε1 lies in the plane

spanned by τ and q in the γ∗p frame. With the constrains
from parity invariance [4] one has S10 = −√

2 S+0 , S11 =
S++−S+− , S22 = S+++S+− so that the above inequality
reads

|S10|2 ≤ S00 S11 . (9)

Now we use that up to a flux and phase space factor Smn

is given by
∫

dΦ′ A∗
mAn where Am is the amplitude of

γ∗p → Xp̃ for photon polarisation m and Φ′ denotes all
variables over which Smn is already integrated. We include
in Φ′ the polarisations of p and the final state particles, for
which the integral reduces to a sum. Taking the functions
Am(Φ′) as elements of a Hilbert space and the integral over
Φ′ as a scalar product (9) is just the Schwarz inequality.

This argument also tells us that we have equality in (8),
(9) exactly if A0 and A1 are proportional to each other as
functions of Φ′. In this case the l.h.s. of (3) and the r.h.s. of
(4) reduce to 1

2ε (S++−S+−+εS00)± 1
2ε |S++−S+−−εS00|,

i.e. to

S00 and
S++ − S+−

ε
, (10)

so that one of the bounds on S00 in (3), (4) becomes equal
to S00 itself, this can be the lower or the upper bound. If
(8) is a strict inequality then the bounds (3), (4) are less
good than in (10). We see that they are rather far apart if
S00 is much smaller or much bigger than S++−S+− = S11.
For (3) and (4) to be tight bounds one needs a region
of phase space where the γ∗p scattering amplitudes with
transverse and longitudinal photons are of comparable
magnitude and where they have a large enough interfer-
ence.

As to the upper bound (5) one easily sees that it equals
S00 if S++ + S+− = S22 = 0 and is bigger otherwise.
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4 Particular diffractive final states

4.1 Two spin zero mesons

To see that the above “optimal bounds” on S00 can ac-
tually be achieved in realistic cases let us consider a very
simple diffractive system X = MM̄ , where M stands for
a spin zero meson such as a pion or kaon, and let p̃ be an
elastically scattered proton. In Smn = dσmn/(dxIP dcos θ)
several degrees of freedom Φ′ are summed or integrated
over:

1. the solid angle of the scattered proton in the γ∗p c.m.
In the diffractive region it is a good approximation to
replace this integration with taking the γ∗p cross sec-
tions and interference terms at zero scattering angle
and multiplying with a common overall factor. In the
following we therefore consider the incoming and out-
going proton to be collinear in the γ∗p c.m.

2. the two configurations where the forward particle is M
or M̄ , related by swapping the meson momenta. As-
suming that the γ∗p reaction can be described by ex-
changes of positive charge conjugation parity between
p and γ∗, which of course holds if pomeron exchange
dominates, it follows from charge conjugation invari-
ance of the subreaction γ∗ + (exchange) → MM̄ that
the γ∗p cross sections and interference terms are equal
for these configurations, cf. [5].

3. the helicities h and h̃ of initial and scattered proton in
the γ∗p frame; for zero scattering angle they are the
same in the rest frame of X. We make the assumption
that the γ∗p amplitudes Ah,h̃

m satisfy A++
m = A−−

m and
A+−

m = A−+
m = 0. This holds for instance in the limit of

large γ∗p c.m. energy in the two-gluon exchange model
of Landshoff and Nachtmann [6] and in the pomeron
model of Donnachie and Landshoff [7].

With these approximations the condition needed for (8)
to be an equality are satisfied and the bounds (3), (4)
take the form (10). One can say more: at θ = 0 it follows
from angular momentum conservation that the γ∗ must
be longitudinal and S++ − S+− = 0. At θ = π/2 it is S00
that must vanish: a rotation by π about the z axis followed
by charge conjugation of γ∗ + (exchange) → MM̄ gives
A++

0 = −A++
0 under our assumptions, the origin of the

minus sign being the negative charge conjugation parity
of the photon. Assuming that S00 is not also zero at θ = 0
or S++ −S+− at θ = π/2 we then have that S00 in (10) is
the upper bound for θ near 0 and the lower one for θ near
π/2, and at some value of θ the curves for the two bounds
in (10) will cross over.

In the X rest frame a parity transformation and sub-
sequent rotation by π about the axis perpendicular to the
scattering plane gives A++

2 = −A−−
2 , where the minus

sign comes from the transformation of the photon polari-
sation ε2. With A−−

2 = A++
2 we thus have S++ + S+− =

S22 = 0 with our assumptions.1 Hence bound (5) is the

1 This result still holds if instead of being zero the amplitudes
A+−

m and A−+
m have equal size and an appropriate relative

phase

longitudinal cross section itself. For θ near π/2 where S00
is smaller than (S++ − S+−)/ε = 2S++/ε one has that
both a lower (3) and an upper (5) bound are equal to S00
which then is completely constrained. Our assumptions in
points 1. to 3. will of course not be exactly satisfied but
one can expect that very close bounds on the longitudinal
cross section can be obtained for X = MM̄ final states.

4.2 X = qq̄

We now look at the diffractive final state at parton level,
where calculations have been made in several models of
diffraction. The simplest state is a quark-antiquark pair,
for which detailed predictions including the γ∗p interfer-
ence terms are available in two-gluon exchange models [5,
8]. We will first consider light quark flavours and neglect
the quark mass.

If the quark and antiquark are only produced with
opposite helicities, which is the case for massless quarks
in the two-gluon models cited, and if one makes the same
assumptions on the scattering of the proton as in points
1. to 3. of the previous subsection, one finds again that
(8) is an equality. Compared with MM̄ one now has an
additional summation in Smn = dσmn/(dxIP dcos θ) over
the two qq̄ helicity combinations. Working in the c.m. of X
one can relate the corresponding amplitudes by a parity
transformation followed by rotation of π about the axis
perpendicular to the scattering plane and finds that A0
and A1 are again proportional as functions of Φ′.

Let us recall some results for the dependence of the
γ∗p cross sections and interference terms on Q2 and on
the transverse momentum PT of the produced quark in
the γ∗p c.m., given by sin θ = 2PT /M where M is the
invariant qq̄ mass. If PT /M is small then S00 and S+−
are suppressed by a factor P 2

T /M2 and S+0 by a factor
PT /M compared to S++ which dominates in this region,
while at large PT all terms can be of comparable mag-
nitude. S++ approximately falls like 1/P 4

T in the range
1 GeV2 <∼ P 2

T � M2. The PT -integrated transverse cross
section dσ++/dxIP is dominated by small PT and behaves
like 1/Q2 at fixed xIP and β, which means Bjorken scaling
of FD

T . In contrast to this the leading power is 1/Q3 for
dσ+0/dxIP and 1/Q4 for dσ00/dxIP and dσ+−/dxIP so that
in particular FD

L is of higher twist. Note however that FD
T

vanishes like 1−β in the limit β → 1 whereas FD
L is finite,

so that in a region of sufficiently large β and not too large
Q2 the longitudinal structure function FD

L can be appre-
ciable. In such a region, where its role is most important,
cc̄ production is suppressed or zero due to its production
threshold, which justifies the restriction of our discussion
to light flavours. Independent of the quark mass one finds
that S+− is positive whereas S+0 changes sign at some
value of β below 1/2, being positive below and negative
above.

In Fig. 3 we show an example of the θ dependence
of the differential bounds (3), (4) given by (10) and of
their weaker versions (6), (7). Since S+− ≥ 0 the bound
(5) is not useful in this case. We see that the bounds (3)
and (4) are equal at some value of cos θ; at smaller cos θ
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Fig. 3. Bounds (3), (4), (6), (7) on the longitudinal cross sec-
tion S00 = dσ00/(dxIP dcos θ) for a final state X = qq̄, cal-
culated by two-gluon exchange [5]. The values of the relevant
parameters are Q2 = 45 GeV2, β = 0.9, ε = 0.8

the curve for S00 coincides with the upper bound and at
larger cos θ with the lower one. This crossover happens
at cos2 θ ≈ (2β−1)2

1+4 β(1−β)(1/ε−1) if the corresponding value of
P 2

T is above a few GeV2 so that certain approximations of
Smn are valid. We also find that bound (6) is rather close
to (3) and (7) to (4) at small cos θ, while at the crossover
point the ratio of (6) to (3) and of (4) to (7) is easily found
to be 1/2. We remark that the lower bounds go to zero at
cos θ → 0 because for any final state the interference term
S+0 vanishes at θ = π/2 due to symmetry reasons [5].
The curves in Fig. 3 stop at very large cos θ where the ap-
proximation used in their calculation becomes inaccurate.
From an experimental point of view it should be difficult
to measure ϕ if θ is below some critical value, this im-
plies that an upper bound can only be given for FD

L in a
restricted kinematical region, unless one is willing to ex-
trapolate a measured upper bound on dσ00/(dxIP dcos θ)
down to θ = 0.

It is worthwhile noting that the transverse-transverse
interference term S+− for qq̄ is found to be positive,
whereas for the production of a π+π− pair we have seen in
the previous subsection that S+− = −S++ ≤ 0. In other
words the preferred orientation of a quark-antiquark pair
is perpendicular to the electron plane in the γ∗p c.m. while
a pair of pions prefers to be in that plane. Parton-hadron
duality has recently been invoked in [9] to calculate the
production of ππ from qq̄ in the region of low-lying reso-
nances like the ρ. If one takes this idea literally then the
change of the azimuthal distribution from qq̄ to ππ is an
interesting effect of hadronisation—beyond the change in
the θ distribution imposed by angular momentum conser-

vation.2 This also implies that a parton level calculation
for the angular distribution cannot be used if the multi-
plicity of X is too small.

4.3 X = qq̄g

For the final state with a qq̄ pair and an additional gluon
no complete calculation with two-gluon exchange has been
performed yet. Results in the leading αs log Q2 approxima-
tion have e.g. been reported in [10]: the transverse struc-
ture function FD

T for qq̄g behaves like (1 − β)3 at large
β and is negligible compared with the qq̄ contribution for
β > 1/2, while FD

L for qq̄g is zero in this approximation.
The three parton final state has also been investigated

in the semiclassical model of [11] who find that it gives
leading twist contributions both to FD

T and FD
L . In [12]

it was shown that this approach can be reformulated in
terms of the diffractive parton model: the proton emits a
parton which scatters on the γ∗, producing two of the par-
tons in X. It is required that their transverse momentum
in the γ∗p frame be sufficiently large for this scattering to
be hard. The third parton in X is approximately collinear
with the proton and plays the role of a “pomeron rem-
nant”.

Let us then take a closer look at what the parton model
description gives for the longitudinal cross section and for
the γ∗p interference terms with the final states just de-
scribed. The calculation is completely analogous to the
one for the azimuthal dependence in nondiffractive deep
inelastic scattering with two partons and a proton rem-
nant in the final state, which can e.g. be found in [13].

Call the four-momenta of the two partons produced
in the hard scattering P1 and P2, with P1 being the for-
ward particle, i.e. having the larger longitudinal momen-
tum along the photon direction in the c.m. of X. Let fur-
ther be PT the transverse momentum of P1 in that frame
and ŝ = (P1 + P2)2. We first give γ∗p interference terms
defined with respect to the azimuthal angle ϕ′ between the
electron momentum k and the vector τ ′ = (P1 − P2)/ŝ.
Restricting our analysis to sufficiently large PT the effects
of a nonzero transverse momentum of the parton emitted
by the proton (and thus of the pomeron remnant) should
not be too large and we set this transverse momentum to
zero.3 We then have

dσmn

dxIP
=

∑
q

παsαeme2
q

(1 − x) Q2

∫ β̂max

β

dβ̂

∫ ŝ/4

P 2
min

dP 2
T√

ŝ(ŝ/4 − P 2
T )

·β
β̂

·
[
g

(
β

β̂
, xIP

)
T qq̄

mn + q

(
β

β̂
, xIP

)
T gq

mn

+q̄

(
β

β̂
, xIP

)
T gq

mn

]
, (11)

2 At θ = 0 we must have S++ = 0 for ππ but not for qq̄ and
S00 = 0 for qq̄ but not for ππ, assuming again that q and q̄ are
produced with opposite helicities

3 Intrinsic transverse parton momentum in nondiffractive ep
scattering has been investigated in [14]
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where β̂ = Q2/(Q2 + ŝ) and its upper limit β̂max fol-
lows from the lower cutoff on PT . The sum

∑
q is over

the flavours of the quarks and eq denotes their charge in
units of the positron charge. For simplicity we have taken
the quarks to be massless, neglecting the complications for
charm production. g(z, xIP ), q(z, xIP ) and q̄(z, xIP ) respec-
tively are the diffractive gluon, quark and antiquark dis-
tributions for a momentum fraction z of the parton with
respect to the momentum transfer ∆ from the proton.
They are integrated over t = ∆2, so that to leading or-
der in αs one has F

D(3)
2 (xIP , β, Q2) =

∑
q e2

q β
(
q(β, xIP )+

q̄(β, xIP )
)
. Finally we have

T qq̄
++ =

1
2

· 8
(
1 − 2β̂(1 − β̂)

) [
ŝ/4 − P 2

T

P 2
T

+
1
2

]

T qq̄
00 =

1
2

· 16 β̂(1 − β̂)

T qq̄
+− = −T qq̄

00

2

T qq̄
+0 =

1
2

· 8√
2

√
ŝ/4 − P 2

T

PT

√
β̂(1 − β̂) (2 β̂ − 1) (12)

for boson-gluon fusion γ∗g → qq̄ and

T gq
++ =

4
3

· 1

1 − β̂

[
4 (1 + β̂2)

ŝ/4 − P 2
T

P 2
T

+5 − 2 β̂(1 − β̂)
]

T gq
00 =

4
3

· 4 β̂

T gq
+− = −T gq

00

2

T gq
+0 =

4
3

· 4√
2

√
ŝ/4 − P 2

T

PT

√
β̂3√

1 − β̂

(13)

for the QCD Compton processes γ∗q → gq and γ∗q̄ → gq̄.
We see that at small P 2

T /ŝ the γ∗p cross sections and in-
terference terms have the same relative factors of 1/PT

as in the case X = qq̄ so that in this region the trans-
verse cross section dominates. The absolute behaviour in
PT is however different; integrating over PT one finds that
dσ00/dxIP , dσ+−/dxIP and dσ+0/dxIP behave like 1/Q2 at
fixed β and xIP , corresponding to leading twist contribu-
tions to the ep cross section, whereas dσ++/dxIP has a
collinear singularity at PT = 0 which with an appropri-
ate cutoff gives a leading twist contribution enhanced by
log Q2, as it is also found in the two-gluon exchange cal-
culation [10].

Looking at the region of large β we see in (12), (13)
that the longitudinal cross section is suppressed compared
with the transverse one by a factor (1 − β̂) ≤ (1 − β),
both for boson-gluon fusion and QCD Compton scatter-
ing. The behaviour of FD

L in the large-β limit depends on
how the diffractive parton distributions behave for z → 1.
If one assumes a power behaviour g(z, xIP ) ∼ (1−z)ng and

q(z, xIP ), q̄(z, xIP ) ∼ (1−z)nq with exponents ng, nq > −1
then FD

L is bounded from above by cg (1−β)ng+2+cq (1−
β)nq+1 with some constants cg, cq. It was argued in [15]
that the behaviour of the parton distributions should be
between (1 − z)0 and (1 − z)1 for gluons and between
(1 − z)1 and (1 − z)2 for quarks; in this case FD

L would
vanish at least like (1 − β)2. In [16] the ratio FD

L /FD
T was

calculated in the diffractive parton model with a partic-
ular ansatz for the parton distributions and indeed came
out small for β ≥ 1/2; it is on the contrary at small β
where this ratio was found to be appreciable.

Let us now investigate the bounds one can obtain for
S00, first for the differential quantities Smn = dσmn/

(dxIP dP 2
T dβ̂). From (11) to (13) one can show that for

all values of the kinematic variables the expansion of the
square roots in (3), (4) which leads to the simplified bounds
(6), (7) is an approximation better than 5% so that it is
enough to discuss the latter. Unlike in the case X = qq̄
one now finds that (8) is always a strict inequality; in
fact already the summation over particle helicities in the
diffractive final state violates the conditions for equality
in (8). It turns out that now 4 |S+0|2 ≤ S00 (S++ − S+−)
with a factor 4 instead of 2 on the l.h.s. The ratio of right
and left hand side goes to 1 if PT → 0 and β̂ = 1 for QCD
Compton scattering and if PT → 0 and β̂ = 1 or β̂ = 0
for boson-gluon fusion. With this we have that the lower
bound (6) is at most 0.5 ·S00. To give a numerical example
away from the edges of phase space we take 4P 2

T /ŝ ≥ 0.2,
0.1 ≤ β̂ ≤ 0.9 and ε = 0.8 and find that the bound is be-
tween 0 and 0.33 ·S00 for boson-gluon fusion and between
0 and 0.38 · S00 for QCD Compton scattering.

The upper bound (5) is now better than (7) because
S+− ≤ 0, and becomes good where S+++S+− is not large
compared to S00. From (12), (13) we see that this is only
the case if 4P 2

T /ŝ is large enough. Comparing T qq̄
+++T qq̄

+− ≥
1
2 ·4 (2β̂−1)2 with T qq̄

00 and T gq
+++T gq

+− ≥ 4
3 ·(1− β̂)−1 with

T gq
00 we further see that β̂(1 − β̂) must not be small. For

ε = 0.8, 0.2 ≤ β̂ ≤ 0.8 and 4P 2
T /ŝ = 0.5 we find an upper

bound between 2.2·S00 and 4.4·S00 for boson-gluon fusion
and between 12 · S00 and 22.5 · S00 for the QCD Compton
process, when going down to 4P 2

T /ŝ = 0.1 these bounds
become about five times larger.

We now have to see how the interference terms corre-
sponding to the vector τ defined from the thrust axis are
related to those discussed so far. We recall that for a sys-
tem X = qq̄g with zero quark mass the thrust axis in its
rest frame is given by the direction of the most energetic
particle. This can be (i) the forward parton produced in
the hard γ∗ parton collision or (ii) the parton playing
the role of a pomeron remnant. For events of type (i) we
have ϕ = ϕ′, i.e. τ and τ ′ lead to the same γ∗p interfer-
ence terms given in (11) to (13). In our simple calculation
with zero transverse momentum for the pomeron remnant
events of type (ii) have τ collinear with q and p and do
not contribute to the ϕ-asymmetry in the ep cross sections,
the corresponding interference terms thus are zero [5]. The
condition for (i) is 1 − √

1 − 4P 2
T /ŝ < 2β(1 − β̂)/(β̂ − β).



502 M. Diehl: Photon polarisation in diffractive deep inelastic scattering

It is always fulfilled for β̂ < 3β/(2β + 1) and otherwise
only for PT below some critical value.

Unless one attempts a separation of final states qq̄ and
qq̄g, using for instance the value of the thrust, one will
sum over them when evaluating the Smn. To investigate
their relative importance is beyond the scope of our study,
but our arguments have shown that in regions of phase
space where qq̄g states dominate the interference terms
and the longitudinal cross section the bounds will not be
very tight, whereas quite good bounds can be expected
where the qq̄ state dominates.

Beyond the possibility to obtain bounds on FD
L the γ∗p

interference terms are interesting in themselves. From (11)
and (12), (13) we see that both for boson-gluon fusion and
QCD Compton scattering the transverse-transverse inter-
ference is negative and thus has the opposite sign than
what we found for X = qq̄ (cf. also [8]). The transverse-
longitudinal interference is more complicated, but if β >

1/2 one has 2β̂ − 1 > 0 and it is positive for X = qq̄g in
our parton model calculation and thus again opposite to
the one for X = qq̄ calculated by two-gluon exchange. In
this sense the sign of the interference terms gives a hint on
the underlying final state and its production mechanism.

Another difference between the final states is the lead-
ing power behaviour in 1/Q at fixed β and xIP of the
integrated interference terms and cross sections Smn =
dσmn/dxIP . For X = qq̄ we found S+− ∼ 1/Q4 and S+0 ∼
1/Q3 compared with Sε ∼ 1/Q2 whereas for X = qq̄g all
three terms go like 1/Q2. There will be logarithmic correc-
tions to these powers, but unless they strongly differ for
S+−, S+0 and Sε the relative behaviour of the interference
terms and the sum of cross sections is clearly distinct in
the two cases. More generally the inequality (8) connects
the Q2 dependence of S00 and S+0 : an interference S+0
that only decreases like 1/Q2 excludes a nonleading twist
behaviour of S00 beyond some value of Q2 if we assume
that S++−S+− is leading twist (experiment indicates that
Sε is).

5 Conclusions

The distribution of an azimuthal angle defined with the
help of the thrust axis of the diffractive final state allows
to extract interference terms between different polarisa-
tions of the exchanged photon in diffractive deep inelastic
scattering. They may help to answer the important ques-
tion of whether the cross section for longitudinal photons
is leading twist or not and furthermore give information
on which diffractive final states dominate in a given kine-
matic region.

These interference terms can be used to obtain model
independent bounds on the longitudinal cross section. We
have shown that it can be advantageous to evaluate these
bounds first with some additional binning in variables
like the polar angle θ of the thrust axis. Such differen-
tial bounds can be equal to the longitudinal cross section
itself. For diffractive final states ππ or KK this happens
under weak dynamical assumptions, which should be sat-
isfied to a good approximation in the diffractive regime.

Using the results of two-gluon exchange models one
has that the qq̄ diffractive final state gives a longitudinal
contribution FD

L to FD
2 which is suppressed by 1/Q2 but

can be non-negligible at large β. The estimated bounds
one could obtain on FD

L in this kinematic region look quite
good, especially if one evaluates them first binned in θ. To
investigate qq̄g final states we used the diffractive parton
model. We have shown that one does not expect these final
states to lead to an appreciable ratio FD

L /FD
T at large β,

but remark that a ratio of up to 0.5 was found at small β
in [16]. In an estimation neglecting the effects of intrinsic
parton momentum and hadronisation, which should be
valid if there is large enough PT in the diffractive system
we find that if this final state dominates then the bounds
on FD

L obtained from the interference terms are much less
stringent than in the qq̄ case, except in some corners of
phase space.
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